Green pre-treatment method and Lignin extraction from lignocellulose biomass for enhanced biofuel production
Abstract
Keywords
Full Text:
PDFReferences
J. Keskiväli, P. Wrigstedt, K. Lagerblom, and T. Repo, “One-step Pd/C and Eu(OTf)3 catalyzed hydrodeoxygenation of branched C11 and C12 biomass-based furans to the corresponding alkanes,” Appl. Catal. A Gen., vol. 534, pp. 40–45, 2017, DOI: 10.1016/j.apcata.2017.01.017.
P. Ibarra-Gonzalez and B. G. Rong, “Systematic Synthesis and Evaluation of Thermochemical Conversion Processes for Lignocellulosic Biofuels Production: Total Process Evaluation and Integration,” Ind. Eng. Chem. Res., vol. 57, no. 30, pp. 9925–9942, 2018, doi: 10.1021/acs.iecr.7b05382.
Rezania, S., Oryani, B., Cho, J., Talaiekhozani, A., Sabbagh, F., Hashemi, B., Rupani, P.F. and Mohammadi, A.A., 2020. Different pretreatment technologies of lignocellulosic biomass for bioethanol production: an overview. Energy, 199, p.117457.
Raud, M., Kikas, T., Sippula, O. and Shurpali, N.J., 2019. Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 111, pp.44-56.
P. Nimmanterdwong, B. Chalermsinsuwan, and P. Piumsomboon, “Prediction of lignocellulosic biomass structural components from ultimate/proximate analysis,” Energy, vol. 222, p. 119945, 2021, doi: 10.1016/j.energy.2021.119945.
Tong, W., Chu, Q., Li, J., Xie, X., Wang, J., Jin, Y., Wu, S., Hu, J. and Song, K., 2022. Insight into understanding sequential two-stage pretreatment on modifying lignin physiochemical properties and improving holistic utilization of renewable lignocellulose biomass. Renewable Energy, 187, pp.123-134.
N. Mt, P. D. F. Pack, B. Laborat, L. Feedst, and L. Feedst, “A national laboratory of the National Renewable Energy Laboratory Innovation for Our Energy Future Determination ... Determination of Structural Carbohydrates and Lignin in Biomass Laboratory Analytical Procedure ( LAP ).”
Li, Z., Otsuki, A.L. & Mascal, M. 2018. Production of cellulosic
gasoline: Via levulinic ester self-condensation. Green
Chemistry 20(16): 3804–3808.
M. Wu, J. Peng, Y. Dong, J. Pang, and X. Zhang, “Extraction and oxypropylation of lignin by an efficient and mild integration process from agricultural waste,” Ind. Crops Prod., vol. 172, no. September, p. 114013, 2021, doi: 10.1016/j.indcrop.2021.114013.
A. Ma’Ruf, B. Pramudono, and N. Aryanti, “Optimization of lignin extraction from rice husk by alkaline hydrogen peroxide using response surface methodology,” Rasayan J. Chem., vol. 10, no. 2, pp. 407–414, 2017, doi: 10.7324/RJC.2017.1021667.
M. Siddique, S. Ahmed, S. Aziz, and F. Akhter, “An Overview of Recent Advances and Novel Synthetic Approaches for Lignocellulosic derived Biofuels,” J. Kejuruter., vol. 33, no. 2, pp. 165–173, 2021.
U. M. Ahmad et al., “Can lignin be transformed into agrochemicals? Recent advances in the agricultural applications of lignin,” Ind. Crops Prod., vol. 170, no. October 2020, 2021, doi: 10.1016/j.indcrop.2021.113646.
F. Mushtaq et al., “Fluidized bed heat exchange capacity of Alumina, coal-char and bio-char solids,” IOP Conf. Ser. Mater. Sci. Eng., vol. 414, no. 1, 2018, doi: 10.1088/1757-899X/414/1/012003.
Akhter,F., Soomro, S.A., Jamali, A. R., Chandio, Z. A., Siddique, M., Ahmed, M. (2021): “Rice husk ash as green and sustainable biomass waste for construction and renewable energy applications : a review,”
F. Akhter and M. Siddique, “Plant and Non-plant based Polymeric Coagulants for
Wastewater Treatment : Plant and Non-plant based Polymeric Coagulants for
Wastewater Treatment : A Review,” vol. 33, no. May, 2021, doi: 10.17576/jkukm-2021-
(2)-02.
DOI: http://dx.doi.org/10.36785/jaes.122569

Journal of Applied and Emerging Sciences by BUITEMS is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.buitms.edu.pk.
Permissions beyond the scope of this license may be available at http://journal.buitms.edu.pk/j/index.php/bj