Synthesis and Characterization of Lead Free Calcium Bismuth Titanate (Ca0.25Bi0.5 TiO3) Piezoelectric Ceramics

Muhammad Rahim


Bismuth layer-structured piezoelectric (BLSP) calcium bismuth titanate (Ca0.25Bi0.5TiO3) piezoelectric ceramics have been prepared via a conventional sol gel reaction method by mixing the desired chemicals in stoichiometric amounts. Calcium bismuth titanate (CBT) samples were characterized by means of XRD, SEM and FTIR spectroscopy. X-ray diffraction (XRD) analysis revealed that CBT ceramics exhibit a single phase orthorhombic structure. The SEM images confirm its morphological size ranging from 1.00 to 2.75µm.FTIR analysis reveals that calcium bismuth titanate has been prepared successfully. The photocatalytic removal of Methylene Blue, cadmium (Cd2+) and other toxic heavy metals will be carried out using CBT materials.

Full Text:



T. Ibn-Mohammed, S. C. L. Koh, I. M. Reaney, D. C. Sinclair, K. B. Mustapha, A. Acquaye and D. Wang. (2017). Are lead-free piezoelectrics more environmentally friendly. MRS Communications. 7(1), pp. 1–7.

Z. Y. Shen, H. Sun, Y. Tang, Y. Zhang and S. Li. (2015). Enhanced piezoelectric properties and excellent thermal stabilities of cobalt-modified Aurivillius-type calcium bismuth titan ate (CaBi4Ti4O15). Materials ResearchBulletin. 63, pp. 129–133.

H. Chen, B. Shen, J. Xu and J. Zhai. (2013).The grain size-dependent electrical properties of Bi4Ti3O12 piezoelectric ceramics. Journal of Alloys and Compounds. 551, pp. 92–97.

A. Tanwar, M. Verma, V. Gupta and K. Sreenivas. (2011). A-site substitution effect of strontium on bismuth layered CaBi4Ti4O15 ceramics on electrical and piezoelectric properties. Material Chemistry and Physics. 130(1-2), pp. 95–103.

X. Wang, C. He and X. Fu. (2014). Electrical performance and microstructure of Li and Mn co-doped Aurivillius-type. Journal of Materials Sciences. 25, pp. 3396–3402.

G. A. Smolensky, V. A. Isopov and J. Argranovskaya. (1961). Structural and dielectric behavior of doped bismuth sodium titanate: Lead free piezoelectric materials. Solid State Physics. 2, pp. NN.

H. Yan, Z. Zhang, W. Zhu, L. He, Y. Yu and C. Li. (2004). Lead free piezoelectric. Materials Research Bulletin. 39, pp. 1237–1246.

X. Wang, X. G. Tang, H. L. W. Chan and P. K. Choy. (2005). Solid State Community. 134, pp. 659–663.

X. Wang, H. L.W. Chan and C. L. Choy. (2003). Synthesis and characterization of piezoelectric. Solid State Community. 125, pp. 395–399.

T. Takenaka, T. Okuda and K. Takegahara. (1997). Dielectric behavior and microstructure of (Bi0.5Na0.5) TiO3BaTiO3 lead-free piezoelectric ceramics. Ferroelectrics. 196, pp. 175–178.

Z. Yu, R. Y. Guo and A. S. Bhalla. (2000).Structure and electrical properties of 001 textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics. Applied Physics Letter. 77, pp. 15–35.

G. Liu, D. Zhu, S. Liao, L. Ren, J. Cui and W. Zhou. (2009). Solid-phase photocatalytic degradation of polyethylene–goethite composite film under UV-light irradiation. Journal of hazardous materials.172(2), pp. 1424–1429.

L. I. Halaoui, N. M. Abrams and T. E. Mallouk. (2005). Increasing the conversion efficiency of dye-sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals. The Journal of Physical Chemistry B. 109(13), pp. 6334–6342.

C. Hammond and C. Hammond. (2009). The basics of crystallography and diffraction (Vol. 12): Oxford University Press Oxford.

J. Choi, H. Park and M. R. Hoffmann. (2009). Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. The Journal of Physical Chemistry C. 114(2), pp. 783–792.

C. C. Chang, C. K. Lin, C.C. Chan, C. S. Hsu and C. Y. Chen. (2006). Photocatalytic properties of nanocrystalline TiO2 thin film with Ag additions. Thin Solid Films. 494(1), pp. 274–278.

R. Liu, H. Wu, R. Yeh, C. Lee and Y. Hung. (2012). Synthesis and bactericidal ability of TiO2 and Ag-TiO2 prepared by coprecipitation method. International Journal of Photoenergy. 6, pp. 46–51.

R. Rahimi, S. Zargari, A. Ghaffarinejad and A. Morsali. (2015). Investigation of the synergistic effect of porphyrin photosensitizer on graphene–TiO2 nanocomposite for visible light photoactivity improvement. Environmental Progress & Sustainable Energy. 65, pp. 78–84.

M. Rahim, N. Abu and M. R. H. Mas Haris. (2016). The effect of pH on the slow-release behaviour of 1- and 2-naphthol from chitosan film. Cogent Chemistry. 2, pp.1234345.

M. Hamadanian, A. Reisi-Vanani and A. Majedi. (2009). Preparation and characterization of S-doped TiO2NPs, effect of calcination temperature and evaluation of photocatalytic activity. Materials Chemistry and Physics.116(2), pp. 376–382.


Creative Commons License
Journal of Applied and Emerging Sciences by BUITEMS is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at
Permissions beyond the scope of this license may be available at

Contacts | Feedback
© 2002-2014 BUITEMS