Customer churn prediction using predictive analytics in Telecommunication Market: A Review

Yasser Khan

Abstract


In the face of extreme competitive telecommunication market, the cost of acquiring new customer is much more expensive than to retain the existing customer. Therefore, it has become imperative to pay much attention towards retaining the existing customers in order to get stabilize in market comprised of vibrant service providers. In current market, a number of prevailing statistical techniques for customer churn management are replaced by more machine learning and predictive analysis techniques. This article reviews the customer churn prediction problem, factors escalating the phenomena, prediction through predictive analytics, steps for processing of predictive analytics and evaluation of performance metrics for various churn prediction models are surveyed. Moreover, the CRM data from Pakistan Telecommunication Company limited as case study to discuss the process of data mining and predictive analytics for customer churn prediction.


Keywords


Predictive analytics, Telecom customer churn and retention, customer relationship management

Full Text:

PDF


DOI: http://dx.doi.org/10.36785/jaes.v9i2.315

Creative Commons License
Journal of Applied and Emerging Sciences by BUITEMS is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at www.buitms.edu.pk.
Permissions beyond the scope of this license may be available at http://journal.buitms.edu.pk/j/index.php/bj

Contacts | Feedback
© 2002-2014 BUITEMS